Unit 5 Study Guide

Skill	Description	Example
Recognize the different parts of a polynomial.	A polynomial may have variable terms and a constant term. The number in front of a variable is its coefficient.	variable term $3x^2 + 2x + 4$ coefficient constant
Describe and classify polynomials.	A polynomial can be classified by its number of terms and by its term with the greatest degree.	Monomial: 3x Binomial: 2x + 5 Trinomial: x ² + 2x · 1 degree 2
Use algebra tiles to represent a polynomial.	We use these tiles:	$x^2 + 2x - 1$
	A pair of tiles with the same shape and size, but different colours forms a zero pair. The tiles model 0.	
Simplify polynomials by combining like terms.	To simplify a polynomial, add the coefficients of like terms.	Like terms: $4x^2$ and $-2x^2$ Unlike terms: $3x$ and -5 $4x^2 - 2x^2 = 2x^2$
Add polynomials.	To add polynomials, remove the brackets and add the coefficients of like terms.	$(4x^{2} + 3x) + (x^{2} - 5x)$ $= 4x^{2} + 3x + x^{2} - 5x$ $= 4x^{2} + x^{2} + 3x - 5x$ $= 5x^{2} - 2x$
Subtract polynomials.	To subtract a polynomial, add the opposite terms.	$(3x^{2} + 5x) - (2x^{2} - x)$ $= 3x^{2} + 5x + (-2x^{2} + x)$ $= 3x^{2} + 5x - 2x^{2} + x$ $= 3x^{2} - 2x^{2} + 5x + x$ $= x^{2} + 6x$
Multiply a polynomial by a monomial.	To multiply a polynomial by a monomial, use the distributive property.	3x(6x - 5) = 3x(6x) + (3x)(-5) = 18x ² + (-15x) = 18x ² - 15x
Divide a polynomial by a monomial.	To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.	$\frac{24x^2 \cdot 32x}{8x} = \frac{24x^2}{8x} + \frac{-32x}{8x} = 3x - 4$

Copyright © 2010 Pearson Canada Inc. 221

Unit 5 Review

5.1	1. Is the	polynomial	a monomial,	binomial,	or t	trinomial?

a)	$3s^2$	+	11.			
----	--------	---	-----	--	--	--

c)
$$2e^2 - 9e + 7$$
 ______. **d)** $8h - 1$ ______.

d)
$$8h - 1$$

a)
$$3k - 4$$

b)
$$2m^2 - m + 3$$

a)
$$3k-4$$
 b) $2m^2-m+3$ **c)** $-n^2+5n-2$

5.2 3. Simplify each polynomial.

a)
$$-7d - 4 \cdot 8d - 2$$

b)
$$3e^2 - 8e + 2e^2 + 11e$$

c)
$$13 = 6h - 2h^2 + 7h - 9$$

d)
$$-9k^2 + 15k - 8 - 2k^2 - 4k + 3$$

4- Identify and explain any errors you find.

a)
$$2x^2 + 5x = 7x^2$$

b) 5s - 7s = -2s

5.3 5. Sketch algebra tiles to model each sum. Then write the sum.

a)
$$(-5e + 7) + (4e - 1)$$

a)
$$(-5e+7) + (4e-1)$$
 b) $(6f^2-2f+5) + (-4f^2-f-3)$

So.
$$(-5c - 7) + (4e - 1) =$$

Remaining tiles: Remaining tiles:
$$So_r (-5c - 7) + (4e - 1) = So_r (6f^2 - 2f + 5) \div (-4f^2 - f - 3)$$

6. Add.

a)	(7r + 11) + (-2r + 3)
	=
	=
	=

6)	(-	$9s^2 + 5s$) + $(16s^2 - 9s - 14)$
	=	
	=	
	=	

5.4 7. Use algebra tiles to model each difference.

Sketch the tiles that remain, then write the difference.

a)
$$(-2t+5)-(-5t+7)$$

b)
$$(-7u - 2) - (-u^2 - 3u - 1)$$

Remaining tiles:			
$So_{1}(-2t+5)-$	(-5t	(7) =	

Remaining tiles:
$$SO_{1}(-7u-2) - (-u^{2} - 3u - 1) =$$

8. Subtract.

a)
$$(6v - 5) - (13v - 3)$$

= $6v + 5 + (____)$
= ____

b)
$$(10w^2 - 7) - (-2w + 9w^2 + 5)$$

5.5 9. Write the multiplication sentence modelled by each set of tiles.

Brees.	
12/4 TE	
54 G	

10. Multiply.

a)
$$6(-7y^2 + 1)$$

= $6(\underline{\hspace{1cm}}) + 6(\underline{\hspace{1cm}})$

b)	-9	$9(-2z^2 - 4z + 5)$
	=	
	=	
	=	

11. Divide.

a)
$$\frac{16a-40}{8}$$

$$= \frac{}{8} + \frac{}{8}$$

$$= \frac{16}{8} \times a + (\underline{})$$

$$= \underline{}$$

b)	27b	$\frac{6^2 - 9b + 36}{-9}$		
	=			
	=			
	=]			

5.6 12. Sketch algebra tiles to multiply. Write the product each time.

13. Multiply.

14. Divide.

a)
$$\frac{-21k^2}{7k}$$

$$= \frac{-21}{7} \times \frac{k^2}{k}$$

$$= \frac{k \times k^1}{k_1}$$

$$= \frac{k \times k}{k_1}$$

-	
- [
= _	

224 Copyright @ 2010 Pearson Canada Inc.