Section 2.5: Exponent Laws II

Oct 31-7:51 PM

Power of a Power Investigation					
Power of a Power	Repeated Multiplication	Product of Factors	Power Form		
(24)3	24 x 24 x 24	(2 x 2 x 2 x 2) x (2 x 2 x 2 x 2) x (2 x 2 x 2 x 2)	212		
(32)4	3 ² x 3 ² x 3 ² x 3 ²	(3 x 3) x (3 x 3) x (3 x 3) x (3 x 3)	38		
(42)3	42 x 42 x 42	(4 x 4) x (4 x 4) x (4 x 4)	46		
$(5^3)^3$	$5^3 \times 5^3 \times 5^3$	(5 x 5 x 5) x (5 x 5 x 5) x (5 x 5 x 5)	59		
[(-4) ³] ²	$(-4)^3 \times (-4)^3$	(-4 x -4 x -4) x (-4 x -4 x -4)	(-4)6		

Oct 31-7:51 PM

Exponent Law for a Power of a Power:

 $(a^m)^n = a^{m \times n}$, where $a \neq 0$, and *m* and *n* are whole numbers.

When you have a power to a power, the base remains the same and the exponents are multiplied.

Write as a power.

A.
$$(3^2)^2$$

B.
$$[(-7)^3]^2$$

$$= 3^{2 \times 2}$$

$$= (-7)^3 \times 2$$

$$= 3^{4}$$

$$=(-7)^6$$

Oct 31-8:08 PM

$$C. -(2^2)^2$$

D. $(3^0)^2$

$$= -(2^{2 \times 4})$$

 $=3^{0 \times 2}$

$$= -(2^8)$$

 $=3^{0}$

Simplify first, then evaluate.

A.
$$(-3^2)^3$$
 x $(-3^0)^9$

B. $(2^3)^2 \times (3^2)^2$

$$= (-3)^{2 \times 3} \times (-3)^{0 \times 9}$$

$$= (-3)^{6} \times (-3)^{0}$$

$$= (-3)^{6+0}$$

$$= (-3)^{6}$$

$$= (-3)^{6}$$

$$= (-3)^{6}$$

$$= (-3)^{6}$$

$$= (-3)^{6}$$

$$= (-3)^{6}$$

$$=(-3)^6 \times (-3)^0$$

$$=(-3)^{6+0}$$

$$=(-3)^{\circ}$$

$$= 729$$

Power	Repeated Multiplcation	Product of Factors	Product of Powers
$(2 \times 5)^3$	(2 x 5) x (2 x 5) x (2 x 5)	2 x 2 x 2 x 5 x 5 x 5	$2^3 \times 5^3$
$(3 \times 4)^2$	(3 x 4) x (3 x 4)	3 x 3 x 4 x 4	$3^2 \times 4^2$
(4 x 2) ⁴	(4 x 2) x (4 x 2) x (4 x 2) x (4 x 2)	4 x 4 x 4 x 4 x 2 x 2 x 2 x 2	4 ⁴ x 2 ⁴
(5 x 3) ⁴	(5 x 3) x (5 x 3) x (5 x 3) x (5 x 3)	5 x 5 x 5 x 5 x 5 x 3 x 3 x 3 x 3 x 3	54 x 34
$(5 \times 6)^2$	(5 x 6) x (5 x 6)	5 x 5 x 6 x 6	5 ² x 6 ²
[7 x (-2)] ³	[7 x (-2)] x [7 x (-2)] x [7 x (-2)]	7 x 7 x 7 x (-2) x (-2) x (-2)	7 ³ x (-2) ³

Oct 31-8:38 PM

Exponent Law for a $(ab)^m = a^m b^m$, where $a \neq 0$, $b \neq 0$ and *m* is a whole number. **Power of a Product:**

When you have a power of a product, the exponent is applied to each factor inside the brackets.

Write as a product of powers.

A.
$$(5 \times 7)^3$$

B.
$$(8 \times 2)^2$$

A.
$$(5 \times 7)^3$$
 B. $(8 \times 2)^2$ C. $[(-1) \times (-4)]^3$

$$= 5^3 \times 7^3$$

$$= 8^2 \times 2^2$$

$$= 5^3 \times 7^3 \qquad = 8^2 \times 2^2 \qquad = (-1)^3 \times (-4)^3$$

Evaluate each question two ways. Use power of a product (Method 1) and BEDMAS (Method 2). A. $[(-7) \times 5]^2$ Method 1: Method 2: $= (-7)^2 \times 5^2$ $=(-35)^2$ $=49 \times 25$ = 1225= 1225B. $-(3 \times 2)^2$ Method 1: Method 2: $=-(6)^2$ $= -[3^2 \times 2^2]$ $= -(9 \times 4)$ = -(36)= -36= -(36)= -36Practice Exercises: Pg. 84 #'s 4, 6, 10a, b, e & f (simplify and evaluate)

Oct 31-8:54 PM

Power	Repeated	Product of Factors	Product of
	Multiplication		Quotients
$\left(\frac{5}{6}\right)^3$	$\frac{5}{-\times}\frac{5}{\times}\frac{5}{\times}$	$5 \times 5 \times 5$	$\frac{5^3}{6^3}$
(6)	6 6 6 6	$6 \times 6 \times 6$	6^3
$(2)^4$	$\frac{2}{\times}$ $\frac{2}{\times}$ $\frac{2}{\times}$ $\frac{2}{\times}$	$2 \times 2 \times 2 \times 2$	24
$\left(\frac{2}{3}\right)^4$	$\frac{-}{3}$ $\times \frac{-}{3}$ $\times \frac{-}{3}$ $\times \frac{-}{3}$	$3 \times 3 \times 3 \times 3$	$\overline{3^4}$
$(1)^5$	1,1,1,1,1	1×1×1×1×1	1 ⁵
$\left(\frac{-}{5}\right)$	$\frac{-\times-\times-\times-\times-}{5}$ $\frac{\times}{5}$ $\frac{\times}{5}$ $\frac{\times}{5}$ $\frac{\times}{5}$	$5 \times 5 \times 5 \times 5 \times 5$	$\overline{5^5}$
$(3)^2$	3 , 3	3×3	3^2
$\left\langle \overline{10}\right\rangle \left $	$\frac{10}{10} \times \frac{10}{10}$	10×10	$\overline{10^2}$
$\left(\underline{-4}\right)^3$	(-4) (-4) (-4)	$(-4)\times(-4)\times(-4)$	$(-4)^3$
$\left(\frac{-4}{7}\right)^3$	$\frac{(-4)}{7} \times \frac{(-4)}{7} \times \frac{(-4)}{7}$	9	$\frac{(-4)^3}{7^3}$

Exponent Law for a $(a \over b)^m = a^m - b^m$, where $a \neq 0$, Power of a Quotient:

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$
, where $a \neq 0$,

 $b \neq 0$ and *m* is a whole number.

When you have a power of a quotient, the exponent is applied to the numerator and denominator inside the brackets.

Write as a quotient of powers.

$$A.\left(\frac{2}{3}\right)^8$$

$$C.\left(\frac{3}{5}\right)^2$$

$$= \underline{2^8}_{3^8}$$

$$= (-6)^{4}$$

$$= 3^{2}_{5^{2}}$$

Oct 31-9:38 PM

Your turn...

D.
$$(6 \div 8)^3$$

E.
$$(9 \div 13)^8$$

D.
$$(6 \div 8)^3$$
 E. $(9 \div 13)^8$ F. $[(-4) \div 11]^5$

$$= 6^3 \div 8^3 = 9^8 \div 13^8 = (-4)^5 \div 11^5$$

$$=6^3 \div 8^3$$

$$=9^8 \div 13^8$$

$$= (-4)^5 \div 11^5$$

Evaluate each question two ways. Use power of a quotient (Method One) and BEDMAS (Method Two).

A.
$$[(-24) \div 6]^4$$

Method 1:

Method 2:

$$= (-24)^4 \div 6^4$$

$$=(-4)^4$$

$$= 256$$

$$= 256$$

C.
$$\left(\frac{(-27)}{3}\right)^2$$

Method 1:

Method 2:

$$= (-27)^2$$

 $=(-9)^2$

= 81

= 81

Practice Exercises: Pgs. 84 - 85 #'s 5, 8, 15b,c, 16a,b,c, & 19a,b,c

Nov 2-10:25 AM