Section 2.4: Exponent Laws I

Oct 28-10:09 PM

Complete the following table:

Product of	Repeated Multiplication	Power Form
Powers	Repeated Multiplication	1 OWCI TOITH
$10^2 \times 10^3$	(10 x 10) x (10 x 10 x 10)	105
10 ³ x 10 ⁴	(10 x 10 x 10) x (10 x 10 x 10 x 10)	107
54 x 55	(5 x 5 x 5 x 5) x (5 x 5 x 5 x 5 x 5)	59
2 ³ x 2 ¹	(2 x 2 x 2) x (2)	24
$3^2 \times 3^5$	(3 x 3) x (3 x 3 x 3 x 3 x 3)	37
4 ³ x 4 ²	(4 x 4 x 4) x (4 x 4)	45

Exponent Law for a Product of Powers:

 $a^m \times a^n = a^{m+n}$, where $a \neq 0$, and m and n are whole numbers.

To multiply powers with the same base, (excluding zero), keep the base and add the exponents.

Can you use your rule to multiply 2³ x 2³? Explain.

No, because the bases ARE NOT the same.

Oct 28-10:19 PM

Write as a single power.

A.
$$9^5 \times 9$$

$$= 95 + 1$$

$$= 8-11 + 13$$

$$= 96$$

$$= 8^{2}$$

C. $5^2 \times 5 \times 5^3$

D.
$$6^4 \times 6^8 \times 6^3$$

$$= 52 + 1 + 3$$

$$=64+8+3$$

$$= 56$$

$$=615$$

Write as a single power, then evaluate.

B. (-7)⁵ x (-7)⁻⁵

$$=43+4$$

 $= (-7)^{5+(-5)}$

$$= 47$$

 $=(-7)^0$

= 1

Your turn...

D. $3^0 \times 3^2 \times 3^3$

$$=10^{5+1}$$

 $=3^{0+2+3}$

$$=10^{6}$$

 $= 3^{5}$

= 243

Oct 27-5:49 PM

Quotients of Powers Investigation

Quotient of	Repeated	Power
Powers	Multiplication	Form
$10^5 \div 10^3$	$\frac{10\times10\times10\times10\times10}{10\times10\times10}$	102
$10^8 \div 10^5$	$\frac{10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10}{10 \times 10 \times 10 \times 10 \times 10}$	103
$5^{10} \div 5^{4}$	5×5×5×5×5×5×5×5×5 5×5×5×5	56
98 ÷ 93	$\frac{9\times9\times9\times9\times9\times9\times9\times9}{9\times9\times9}$	95
75 ÷ 74	$\frac{7 \times 7 \times 7 \times 7 \times 7}{7 \times 7 \times 7 \times 7}$	7

a Quotient of Powers: and m and n are whole

Exponent Law for $a^m \div a^n = a^{m-n}$, where $a \neq 0$, numbers.

To divide powers with the same base, (excluding zero), keep the base and subtract the exponents.

Can you use your rule to divide $5^2 \div 2^3$? Explain.

No, because the bases are NOT the same.

Oct 25-6:59 PM

Write as a single power.

A.
$$12^6 \div 12$$

B.
$$8^3 \div 8^2$$

C.
$$2^6 \div 2^2$$

$$= 12^{6-1}$$

$$= 8^3 - 2$$

$$= 2^{6-2}$$

$$= 12^{5}$$

$$= 8$$

$$= 2^4$$

Your turn...

D.
$$\frac{6^7}{6^5}$$

E.
$$\frac{5^7}{5^3}$$

$$=6^{7}-5$$

$$= 5^7 - 3$$

$$= 6^2$$

$$= 5^4$$

Write as a single power, then evaluate.

A. $2^5 \div 2^2$

B. $45 \div 43$

= 25 - 2

= 45 - 3

 $= 2^{3}$

 $=4^{2}$

=8

= 16

C. $\frac{3^4}{3^4}$

D. $(-6)^8$

= 34 - 4

 $=(-6)^{8-6}$

 $= 3^{0}$

 $=(-6)^2$

= 1

= 36

Oct 29-9:50 AM

Your turn...

 $F(-2)7 \div (-2)5$

F. $(-3) \div (-3)$

 $= (-2)^7 - 5$

 $=(-3)^9-5$

 $=(-2)^{2}$

 $=(-3)^4$

=4

= 81

Practice Exercises: Pgs. 76-77 #'s 4-6a

Often problems will require applying more than one exponent law:

A.
$$8^{12} \div 8^7 \times 8^2$$

$$= 8^{12 - 7} \times 8^2$$

$$= 8^5 \times 8^2$$

$$= 8^5 + 2$$

$$= 8^7$$

$$= 2^8 - 2$$

$$= 2^6$$

$$= 64$$

Oct 29-10:00 AM

C.
$$\frac{(-4)^{10}}{(-4)^3 \times (-4)^3}$$

$$= \frac{(-4)^{10}}{(-4)^{3+3}}$$

$$= \frac{(-4)^{10}}{(-4)^6}$$

$$= (-4)^{10} = 36 + 7776$$

$$= (-4)^{10} = 7812$$

$$= 256$$

Your turn...

G.
$$2^3(2^6 \div 2^2) - 2^4$$

H.
$$(-3)^6 \div (-3)^5 - (-3)^5 \div (-3)^3$$

$$=2^3(2^{6-2})-2^4$$

$$=(-3)^{6-5}-(-3)^{5-3}$$

$$=2^3(2^4)-2^4$$

$$=(-3)^1-(-3)^2$$

$$=2^{3+4}-2^4$$

$$= 27 - 24$$

Practice Exercises: Pgs. 77-78 #'s 8, 10, & 15

Oct 31-7:13 AM