Section 2.2: Powers of Ten and the Zero Exponent

Table 1:

Power	Repeated Multiplication	Standard
		Form
35	3 x 3 x 3 x 3 x 3	243
34	3 x 3 x 3 x 3	81
33	3 x 3 x 3	27
32	3 x 3	9
31	3	3

The exponent decreases by ____1 each time.

Each time the exponent decreases, standard form is divided by $\underline{3}$.

This pattern suggests that $3^0 = \underline{}$.

Note:

Zero Exponent Rule

Any base (excluding zero) with the exponent zero is one.

$$a^0 = 1$$
 where $a \neq 0$

For the following, identify the base, then evaluate the answer.

1.
$$5^0$$
 The base is 5 and $5^0 = 1$.

2.
$$10^{\circ}$$
 The base is 10 and 10° = 1.

Note: The zero exponent applies to the number in the brackets.

Note: If there are no brackets, the zero exponent applies ONLY to the base.

<u>Practice.</u> Evaluate the following powers (remember the order of operations – BEDMAS).

A.
$$3 + 2^0$$

B.
$$3^0 + 2^0$$

$$= 3 + 1$$

$$= 1 + 1$$

$$=2$$

C.
$$(3+2)^0$$

D.
$$-3^0 + 2$$

$$=(5)^0$$

$$=-1(1)+2$$

$$= 1$$

$$=(-1)+2$$

$$= 1$$

E.
$$-3^0 + (-2)^0$$

F.
$$-(3+2)^0$$

$$= -1(1) + 1$$

$$=-1(5)^0$$

$$= (-1) + 1$$

$$= -1(1)$$

$$=0$$

$$=(-1)$$

Writing Numbers Using Powers of Ten

Power	Repeated Multiplication	Standard Form	Words
109	10x10x10x10x10x10x10x10x10	1 000 000 000	one billion
108	10x10x10x10x10x10x10x10	100 000 000	one hundred million
107	10x10x10x10x10x10x10	10 000 000	ten million
106	10x10x10x10x10x10	1 000 000	one million
105	10x10x10x10x10	100 000	one hundred thousand
104	10x10x10x10	10 000	ten thousand
103	10x10x10	1 000	one thousand
102	10x10	100	one hundred
101	10	10	ten
100	1	1	one

Note: From the above table, we can see that the exponent is equal to the number of zeros .

When we write numbers in our everyday lives, we are using standard form. When numbers are written using powers of ten, we are using <u>expanded form</u>.

Write the following numbers using powers of ten:

A.
$$600 = 6 \times 100$$

= 6×10^2

B.
$$100\ 000 = 1 \times 100\ 000$$
$$= 1 \times 10^{5}$$

C.
$$4\ 300 = (4 \times 1000) + (3 \times 100)$$

= $(4 \times 10^3) + (3 \times 10^2)$

D.
$$3 452 = (3 \times 1000) + (4 \times 100) + (5 \times 10) + (2 \times 1)$$

= $(3 \times 10^3) + (4 \times 10^2) + (5 \times 10^1) + (2 \times 10^0)$

Write the following numbers in standard form:

A.
$$6 \times 10^3 = (6 \times 1000)$$

= 6000

B.
$$(5 \times 10^3) + (7 \times 10^2) + (8 \times 10^1) + (8 \times 10^0)$$

= $(5 \times 1000) + (7 \times 100) + (8 \times 10) + (8 \times 1)$
= $5000 + 700 + 80 + 8$
= 5788

Practice Exercises: pg. 61 #4, 5, 6, 8, 9, 10 & 13